// NOTE: Check the input graph for multiple edges between the same vertices! You will want to keep the shortest one // Time complexity: O(n^3) // Memory complexity: O(n^2) - only for n ~ 10^3 (n ~ 10^4 results in 1524 MB of memory) // Input: Graph as an adjancency matrix (weight __LONG_MAX__ => no edge) // Output: A distance matrix (distance __LONG_MAX__ => no path) vector> floyd_warshall(vector> adj) { size_t n = adj.size(); vector> distance(n, vector(n, 0)); // Initialize distance for (size_t i = 0; i < n; i++) { for (size_t j = 0; j < n; j++) { // Original floyd-warshall // if (i == j) distance[i][j] = 0; // else if (adj[i][j]) distance[i][j] = adj[i][j]; // else distance[i][j] = __LONG_MAX__; // My version if (i == j) distance[i][j] = 0; else distance[i][j] = adj[i][j]; } } // Find shortest distances for (size_t k = 0; k < n; k++) { for (size_t i = 0; i < n; i++) { for (size_t j = 0; j < n; j++) { if (distance[i][k] == __LONG_MAX__ || distance[k][j] == __LONG_MAX__) continue; distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j]); } } } return distance; }